
Functions in C++
Introduction

Developers often need the ability to break larger programs into smaller programs, which

are easier to develop. The real world programs can be many thousands of lines long, without

dividing the programs into sub programs, and developing such large program could be

impossible and even debugging and adding new features to that create so many problems. C++

allows developers to divide their program into smaller programs called as functions. A function

is a simple and well-defined sub program, which performs some specific task. Functions are used

to provide modularity to the program. Developing application using functions makes it easier to

understand and modify and easy to debug the program.

Advantages of using functions:

• The program can be easily understandable and easy to modify and debug the code.

• Functions can be stored in library and can be reused many number of times in the

programs.

• Sometimes part of code in the program is to be used more than once at different places in

the program in that context the functions can be written once and called at different

places in the program which avoids repetition of code in the program.

Function definition
The function definition defines the description of a function. It gives information about what

function going to do and its inputs and outputs. The function definition consists of two parts:

• A Function header

• Function body

Syntax:

return_type func_name (parameter declarations)

{

 variable declarations;

 statements;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 return; or return (expression);

}

 The first line in the function definition is known as the function header, after that the

function of body starts in curly braces. The return_type defines the type of the value the function

returns. A function can return value or it does not return a value. A function which does not

return any value called as void function and ‘void’ should be return in the place return_type.

 If no return type is mentioned by default, it will assume ‘int’ return type. func_name

specifies the name of the function. After function name there will parameter declarations inside

the parentheses, which mentions the type and name of the parameters. These parameters are also

called formal parameters and are used to accept the values from a function call.

 A function can have no parameters or any number of parameters. If there are no

parameters then ‘void’ is written inside the parenthesis, which denotes that this function does not

have any parameters. The body of a function is block of code, which consists of declaration of

variables, statements and return statement. The variables declared inside the function are called

as local variables and scope is local to that function only. They are created when the function

body enters and destroyed when the function is exited.

 The return statement is used for exit from the called function and returns to calling

function. If there is no return statement in the function then that function is executed till the close

brace is encountered. The return can be used in two ways:

• Only ‘return;’ – This statement is used to terminate the function without returning any

value to function.

• return with expression ‘return(expression) – This statement is used to terminate the

function and return a value to the calling function. The expression can be constant value

or any valid expression.

Example:

return 10;

return (a+b);

return a++;

Let us consider an example program in which define a function, which add two numbers, and

return the sum to calling function and which will display result on the console.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure1: Function Definition example program

Figure2: Output of the program

There are two types of functions:

1. Library functions

2. User defined functions

Library functions
 The library functions are built in functions in C++ programming. The developer can use

library functions by invoking the function call directly. To use the library function we need to

include corresponding header file using preprocessor directive “#include” in the starting of the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

program. For example, the ‘cin’, ‘cout’ and ‘endl’ functions are available in the library

‘iostream’. Let us take one example, which illustrates the use of library functions.

Figure3: Library function example program

Figure4: Output of the program

In the above program we used “sqrt()” library function to calculate the square root of a given

number. We included this function using “#cmath” header file in the program. Using “#include

<cmath>” we can use all functions defined in cmath library.

User defined functions

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 C++ allows programmers to define their own functions. The programmers can define their

own functions for performing any specific task. When that functions are invoked from any part

of the program, it will executes the code defined in the body of function. The following figure

shows the user defined function. Here the program starts begin with main () function and starts

executing the statements in the program, when the control reaches to “func_name()” statement in

the main () function the control of the program moves to the “int func_name()” and starts

executing that function. After executing all the statements in that function the control jumps to

the main program exactly after the “func_name ()” call and starts executing remaining part of the

main program.

Figure5: User defined function

To use User defined functions we need to know the following points:

• Function declaration

• Functions call

• Function definition

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Function declaration
 Functions declaration also called function prototype. Functions declaration is used to give

specific information about the function to the compiler so that it can check the function calls.

The calling function needs information about called function. It can be used in two ways; if the

definition of the called function is defined before the calling function then function declaration is

not needed. In this case the function is defined before main () function so that the main ()

function knows the information about called function. Generally the main () function is defined

at the starting of the program and the remaining functions are defined after main function (). In

this situation function declaration is required, and which gives the information about following

points to compiler:

• Name of the function

• Type of arguments and number of arguments

• Type of value returned by the function

Syntax:

return_type func_name(type_arg1, type_arg2, ….);

Example:

int add(int a, int b);

The syntax of function declaration looks like function definition except there is comma at the

end of the line. The arguments in the function declaration can be used without name also, these

are optional and the compiler ignores the name as shown below example.

 int add (int, int);

Function definition
 The function definition already explained in the above sections, which gives the

information about the function. When the function is called the control point is transferred to

first statement of function, starts executing the statements sequentially till the last statement

reached and then the control point moves to the calling function.

Function call

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 To execute the function defined in the program, it needs to be invoked or called from

somewhere in the program. A function is called by simply writing function name followed by the

arguments list in the parentheses. The functions calls are called in the main () function. The

arguments used here are actual arguments, which are passed to called function.

Syntax:

return_type func_name(arg1, arg2, arg3, …)

Figure6: Example for user defined function

Let us consider example program for user-defined function which defines two functions addition

and subtraction of two numbers and returns the result of sum and difference to the calling

function.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure7: Example program for User defined function

Figure8: Output of the program

Passing arguments to function
 The variables used during function call are called actual arguments and these values are

initialized to other variables in the function definition are called formal arguments. In the above

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

example program the variables ‘a’ and ‘b’ used in function call are called actual arguments and

the values of these variables are initialized to variables ‘x’ and ‘y’ in the function definition are

called formal arguments.

• The number of actual arguments and formal arguments should be same.

• The type of each argument in function call should match the type of each argument in the

function definition.

• The type of arguments should be any type but should match in function call and function

definition.

• We can use any number of arguments or no arguments.

Inline functions
 The inline functions are C++ added feature to increase the execution time of a program.

The one problem with function is that every time a function is called there is a certain amount

performance overhead because the CPU must store the address of the current instruction it is

executing along other registers, all the function parameters must be created and assigned values

and the program has to branch a new location.

 The inline function is used in the program is significantly faster and this is a powerful

concept used with classes. If a function is inline then the compiler places a copy of the code of

that function at every place where the function is called at compiler time. The ‘inline’ keyword is

used to request the compiler treat your function as an inline function.

 Any change in the inline function could requires to recompile the program because the

compiler would need to replace all the code once again in the program otherwise it runs with

previous functionality. The problem with inline functions is expanded the code for every

function call in the program, this can make your compile code bit a larger. The below example

program is using inline function, in which we are finding out which is a small number in a given

numbers.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Figure9: Example program for Inline function

Figure10: Output of the program

C++ function types
Based on the return value and arguments the functions can be classified into four types:

• Functions with no argument and no return value

• Functions with no argument but return value

• Functions with argument but no return value

• Functions with argument and return value

Functions with no argument and no return value
 In the below example program the function ‘func ()’ is called from main () function and

the ‘func ()’ definition is written after the main function. The ‘func ()’ does not have arguments

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

and no return type, so it cannot send any data to ‘func ()’ and the ‘func ()’ cannot return any data

to main () function.

Figure11: Functions with no argument and no return value

Functions with no argument but return value
 These functions does not have any arguments but they can return a value to main ()

function.

Figure12: Functions with no argument but return value

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Functions with argument but no return value
 These functions have arguments so the calling function send arguments to called function

but it does not have return value so they cannot return any value to calling function.

Figure13: Functions with argument but no return value

Functions with argument and return value
 These types of functions have arguments and return type, so the calling function sends the

arguments to the called function and the called function return some data to the calling function

using return statement.

Figure14: Functions with argument and return value

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

